Subramanian, K., and M. A. Hanna. Glycol glucosides process synthesis by reactive extrusion with a static mixer as postextruder reactor, 179

Sugetama, T. See Y. Kaneda, 244

Suganuma, T. See Y. Kaneda, 244


Takeda, Y. See I. A. Jideani, 677

Tester, R. F, and J. Karkalas. Swelling and gelatinization of oat starches, 271

Tiscornia, E. See P. Zunin, 691

Townley-Smith, F. See P. Gélinas, 767

Toyosawa, I. See N. Moritz, 99

Truzzi, L. See M. Ciaffi, 346


Troccoli, A. See C. Fares, 232

Tsai, M.-L. See C.-Y. Lii, 415

Tseng, K.-H. See C.-Y. Lii, 415

Tumbleston, M. E. See S. R. Eckhoff, 54

Tuncer, T. See H. Köksel, 506

Uno, K., T. Imai, N. Ogata, and K. Kohyama. New viscosograph for rheological analysis of a small quantity of wheat flour, 452

Vadlamani, K. R., and P. A. Seib. Reduced browning in raw oriental noodles by heat and moisture treatment of wheat, 88

Vargas, H. See M. E. Rodríguez, 593

Vasanthan, T., and R. S. Bhatt. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amyllose barleys, 199

Vinyard, B. T. See E. T. Champagne, 290

Vodovotz, Y., L. Hallberg, and P. Chinachoti. Effect of aging and drying on thermomechanical properties of white bread as characterized by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), 264

Wahlgren, M. See L. Wannerberger, 499

Walker, C. E. See J. L. Hazleton, 284

Wang, L., and P. A. Seib. Australian salt-noodle flours and their starches compared to U.S. wheat flours and their starches, 167


Wannerberger, L., M. Wahlgren, and A.-C. Eliasson. Adsorption of protein fractions from wheat onto methylated silica surfaces, 499

Watts, B. M. See S. M. Wang, 445

Webb, B. D. See E. T. Champagne, 290


Wehr, S. R. Delwiche, 625, 628

Wen, Q.-B. See D. A. Sampson, 770

Whistler, R. L. See J. Zhao, 379

Wiesenborn, D. P. See Y. S. Kim, 302

Wieser, H. See P. Schropp, 410

Wikström, K., and L. Bohlin. Multivariate analysis as a tool to predict bread volume from mixogram parameters, 686

Wilson, J. R. See D. B. Bechtel, 567

Wong, J. H. See P. Gobin, 495

Worthington, S. T. See H. Yamamoto, 215

Wrigley, C. W. See M. Berman, 323

Wu, Y. V. See C. Blumenthal, 762


Yapintoco, K. F, E. J. Fox, and S. R. Eckhoff. A laboratory countercurrent steep battery for corn wet-milling, 249

Yuan, J., and R. A. Flores. Laboratory dry-milling performance of white corn: Effect of physical and chemical corn characteristics, 574

Zayas, I. Y., and J. L. Steele. Image texture analysis for discrimination of mill fractions of hard and soft wheat, 136

Zehr, B. E. See S. R. Eckhoff, 54

Zhao, J., M. A. Madson, and R. L. Whistler. NOTE: Cavities in porous corn starch provide a large storage space, 379

Zou, S. H. See S. R. Eckhoff, 54

Zuleta, A. See M. E. Sambucetti, 759

Zunin, P., F. Evangelisti, C. Calcagno, and E. Tiscornia. Cholesterol oxidation in dried egg pasta: Detecting 7-ketocholesterol content, 691

Vol. 73, No. 6, 1996 795
Subject Index

Page numbers of errata are in italics.

Acetic acid, fractions, characterization of glutenin of bread wheat (Dupuis et al), 131

Acknowledgment of reviewers, v

Adsorption, gliadin and water-soluble fractions from wheat onto methylated silica surfaces (Wannerberger et al), 499

Alkaline cooking, influence of structural changes during, on thermal, rheological, and dielectric properties of corn tortillas (Rodríguez et al), 593

Amylopeptin
—African cereals, structure (Jideani et al), 677
—mathematical characterization of plasticizing and antiplasticizing effects on amylopeptin (Peleg), 712
—molecular characterization (Bello-Perez et al), 12

Amylose
—African cereals, structure (Jideani et al), 677
—content in whole-grain milled rice by NIR reflectance spectroscopy (Delwiche et al), 257
—effect on rheological property of rice starch (Li et al), 415
—lipid complexes; to hydrolysis by glucoamylase (Kitahara et al), 428

Antibody, wheat dough extensibility screening (Andrews and Skerritt), 61

Ash
—determination of, by conductivity (Fjell et al), 510
—distribution pattern; screening among lines with (Fares et al), 232

Baked goods, firming and water mobility during storage (Ruan et al), 328

Baking
—Canadian wheats; Fusarium head blight effect (Dexter et al), 695
—effect of flour storage on baking performance (Chen and Schofield), 1
—low volume increased by gluten proteins (Czuchajowska and Paszczyńska), 483
—protein solubility changes of different varieties (Huang and Khan), 512
—qualities of wheats developed and grown in eastern and northeastern U.S. (Gaines et al), 521
—review on effect of HMW glutenin subunits of durum semolina/flour for potential use (Liu et al), 155
—rheological properties relationships to cakes and cookies (Yamamoto et al), 215
—white pan bread; characteristics as affected by fat tempering (Nor Aini and Che Maimon), 462

Barley
—hull-less, food malt production from (Bhatty), 75
—starch; heat treatment effects on digestibility (Xue et al), 588
—starch; physicochemical properties (Vasanthan and Bhatty), 199

Bean
—navy, chemical composition and canning quality correlations (Lu and Chang), 785
—navy, physical properties and canning quality correlations (Lu and Chang), 788

Bran, soft wheat and oat consumption, comparison of large bowel function and calcium balance (Hosig et al), 392

Bread
—aging and drying effect on thermomechanical properties of (Vodovozt et al), 264
—aroma and flavor; use of wine yeast preferment (McKinnon et al), 45
—common wheat cultivar Soissons, relation to growing location effect on protein polymerization (Jia et al), 526
—staling; calorimetry (Schiraldi et al), 32
—volume; multivariate analysis to predict (Wikström and Bohlin), 686
—white pan bread, effects of fat tempering on texture (Nor Aini and Che Maimon), 462
—zinc supplementation effect on baking quality (Saldamli et al), 424

Bread-baking, dairy ingredients in (Erdogdu-Arnoczky et al), 309

Breadmaking
—baking potential of diploid wheats (Borghini et al), 208
—effect of α-glucosyl rutin on (Morita et al), 99
—quality; effects of nitrogen fertilization and maturation on (Jia et al), 123
—gluthione and the effect of flour storage (Chen and Schofield), 1
—review of improvement of durum semolina/flour on potential use (Liu et al), 155
—use of monocaprin and tricaprin (Roach and Hoseney), 197

Cakes
—flour physicochemical and rheological properties (Yamamoto et al), 215
—milling and baking qualities of wheats developed and grown in eastern and northeastern U.S. (Gaines et al), 521
—quality; gliadin quantity in soft wheat flour relation (Hou et al), 352
—quality, glutenin quantity in soft wheat flour relation (Hou et al), 358, 515

Carbon dioxide, influence on grain yield and quality of rice (Seneweera et al), 239

Cereal
—baby, ion-pair reversed phase liquid chromatography for furosine determination in (Guerra-Hernandez and Corza), 729
—foods; textural change patterns in, caused by moisture sorption (Harris and Peleg), 225
—ready-to-eat, sorghum for (Cruz y Celis et al), 108
—resistant starch in dietary fiber values measured in (Sambucetti and Zuleta), 759

Chlorination, flour, wheat protein modifications due to (Duviat et al), 490

Cholesterol
—lowering with rice bran (Kahlon et al), 69
—oxidation; in dried egg pasta (Zunin et al), 69

Chromatography, ion-pair reversed-pair liquid, for furosine determination in (Guerra-Hernandez and Corzo), 729

Cookies
—flour physicochemical and rheological properties (Yamamoto et al), 215
—milling and baking qualities of wheats developed and grown in eastern and northeastern U.S. (Gaines et al), 521
—quality; gliadin quantity in soft wheat flour relation (Hou et al), 352
—quality, glutenin quantity in soft wheat flour relation (Hou et al), 358, 515
—triticale flours used in, quality factors (Leon et al), 779

Cooking, loss; of pasta made from incorporation of regrinds (Fang and Khan), 317

Corn
—dry milling characteristics of (Pan et al), 517
—dry milling quality prediction by NIR spectroscopy (Wehling et al), 543
—endosperm characteristics determined by Stenvert Hardness Test (Li et al), 466
—germ plasm; starch granule size variation in (Campbell et al), 536
—steeping; facilitated by sulfur dioxide at low pH (Biss and Cogan), 40
—wet milling; acid effect on (Du et al), 96
—wet milling; laboratory countercurrent steep battery for (Yaptenco et al), 249
—wet milling procedure (Eckhoff et al), 54
—wet milling; review of laboratory-scale and pilot plant-scale procedures (Singh and Eckhoff), 659
—wet milling conditions; effect of sulfur dioxide, lactic acid, and steeping temperature on starch functionality (Shanders and Jackson), 632
—white, laboratory dry-milling performance of (Yuan and Flores), 574

Couscous, quality affected by process effect (Debbouz and Donnelly), 668

Cysteine, as free radical scavenger in extrusion (Koh et al), 115

Dietary fiber, resistant starch in, measured in cereals (Sambucetti and Zuleta), 759
Dough
—extensibility (Andrews and Skerritt), 650
—extensional properties of (Morgensten et al), 478
—frozen and fresh, evaluation of, involving stress conditions (Gélinas et al), 767
—frozen, gas production and retention changes in (El-Hady et al), 472
—protein solubility changes (Huang and Khan), 512
—reconstitutin (Skerritt et al), 644
—review on durum and bread rheological differences (Liu et al), 155
—rheological parameters; size-exclusion HPLC to determine relation with flour protein composition (Ciaffi et al), 346
—rheological properties (Czuchajowska and Paszczyńska), 483
—rheological properties of diploid wheats (Borghi et al), 208
—stickiness measurement (Wang et al), 445
—undeveloped, mixing wheat flour and ice to form (Campos et al), 105
—wheat, effect of α-glucosyl rutin on (Morita et al), 99
—wheat flour, influence of mixing time, ascorbic acid, and lipids on phase separation (Larsson and Eliasson), 25
—wheat flour, water content influence on phase separation (Larsson and Eliasson), 18
Dry milling, quality prediction of corn by NIR spectroscopy (Wehling et al), 543
Drying
—effect on hardness (Bechtel et al), 567
—effect on thermomechanical properties of bread (Vodovotz et al), 264
Electrophoresis
—capillary, separations of wheat, rice, and oat proteins (Lookhart and Bean), 81
—capillary of wheat prolamin for identification of rye translocation lines (Lookhart et al), 547
—of glutenin during breadmaking (Huang and Khan), 512
Errata
—vol. 72, no. 6, p. 599, 552
—vol. 72, no. 6, pp. 632, 634, 636, 295
—vol. 73, no. 3, pp. 361, 363, 515
Extrusion
—of pasta made from incorporation of regrinds (Fang and Khan), 317
—reactive, glycol glucosides process synthesis by (Subramanian and Hanna), 179
Fermentatin, protein solubility changes (Huang and Khan), 512
Fertilizer, late nitrogen, effects on rice (Perez et al), 556
Films, from rice protein concentrate and pullulan (Shih), 406
Fissures, in rice caused by moisture adsorption (Lee and Kunze), 222
Flour
—affecting spaghetti quality (Rayas-Duarte et al), 381
—composite wheat-sweet potato (Collado and Corke), 439
—diploid wheat, carotenoids, gluten, and protein content (Borghi et al), 208
—effect of storage on glutathion content and breadmaking performance (Chen and Schofield), 1
—fortification by gluten (Czuchajowska and Paszczyńska), 483
—milling and baking qualities of wheats developed and grown in eastern and northeastern U.S. (Gaines et al), 521
—quality evaluation using new viscougraph (Uno et al), 452
—wheat, cysteine effects on (Koh et al), 115
—wheat, effect of high-temperature short-time treatment (Guerrieri and Cerletti), 375
—wheat, mixed with ice to form undeveloped dough (Campos et al), 105
—wheat, vitamin B₆ and pyridoxine glucoside content of (Sampson et al), 770
Fluorescence
—of gluten; intrinsic and extrinsic, as affected by temperature (Guerrieri et al), 368
—extrinsic and extrinsinc of gluten, effect of high-temperature short-time treatment (Guerrieri and Foam), 375
Foam
—physical, mechanical, and thermal properties (Lin et al), 189
—starch-based plastic, from various starch sources (Bhatnagar and Hanna), 601
Fractionation, of flour proteins (Andrews and Skerritt), 650; (Skerritt et al), 644
Fracstone, mathematical characterization of plasticizing and antiplasticizing effects, on amylopectin (Peleg), 712
Gelatinization, measured by pulsed NMR (Mendes da Silva et al), 297
Germ, recovery parameters affected by soak time and temperature and lactic acid (Singh and Eckhoff), 716
Glass transition, effect on zein rheological properties (Madeka and Kokini), 433
Gliadin
—adsorption onto methylated silica surfaces (Wannerberger et al), 499
—fractionation (Skerritt et al), 644
—relation to rheological properties, cake- and cookie-baking qualities (Hou et al), 352
Glucosides, glycol, synthesis by reactive extrusion (Subramanian and Hanna), 179
Gluten
—NMR study of water in (Cherian and Chinchotii), 618
—protein aggregation due to temperature (Guerrieri et al), 368
—proton relaxation of by solid-state NIR spectroscopy (Li et al), 736
—review, relationship of HMW and LMW glutenin subunits and dough strength (Liu et al), 155
—wet, in baking (Czuchajowska and Paszczyńska), 483
—wheat, effects of HMW subunits of glutenin on rheological properties of (Schröpp and Wieser), 410
Glutenin
—characterization of acetic acid fractions of bread wheat (Dupuis et al), 131
—fractionation (Skerritt et al), 644
—fractionation by SDS-PAGE (Andrews and Skerritt), 650
—fractionation of soluble and insoluble (Fu and Sapirstein), 143
—HMW subunits, dough rheology role in SWW and club wheats (Czuchajowska et al), 338
—relation to rheological properties, cake- and cookie-baking qualities (Hou et al), 358, 515
Grain
—electronic nose for odor classification (Börjesson et al), 457
—mold; resistance properties to, in sorghum (Menkir et al), 613
—quality; Stenvert Hardness Test to determine endosperm characteristics (Li et al), 466
—starch in, measure comparison (Marlett and Longacre), 63
Grain sorghum
—volatile compounds and odors in (Seitz and Sauer), 744
—wet milling of (Yang and Seib), 751
Hardness
—affected by drying conditions (Bechtel et al), 567
—maize, effect of NIR transmission-based selection on (Eyherabide et al), 775
—measurement; predicting with single-kernel characterization system (Gaines et al), 278
—Stenvert Test to determine endosperm characteristics (Li et al), 466
—HPLC
—analysis of amylose and amylopectin from African cereals (Jideani et al), 677
—separation of α-gliadins, HMW-, and LMW-glutenin subunits (Fu and Sapirstein), 143
—size-exclusion, to determine relation between flour protein composition and dough rheological parameters (Ciaffi et al), 346
Hydrothermal treatment, thermal characterization from heat-moisture treated rice (Lu et al), 5
Image analysis
—for semolina speck counting (Symons et al), 561
—whole grain to screen for wheat milling quality (Berman et al), 323
Image texture analysis, for discrimination of mill fractions of wheat (Zayas and Steele), 136
Insect
—contamination; detection in wheat milling fractions by measurement of uric acid (Ghaedian and Wehling), 625
—infestation of grain sorghum, volatile compounds and odors (Seitz and Sauer), 744
Instructions to authors, iii
Instruments and instrumentation
—predicting a hardness measurement using single-kernel characterization system (Gaines et al), 278
—RVA, temperature of liquid contents in cans (Hazelton and Walker), 284
Irradiation, effects on spaghetti cooking quality (Köksel et al), 506
Jet-cooking, preparation of starch-oil composites, composition and oil-retaining capacity (Knutson et al), 185

Lactic acid, effect on germ recovery parameters (Singh and Eckhoff), 716

Lipids
—amylose complexes; to hydrolysis by glucoamylase (Kitahara et al), 428
—liver, resistant starch effect on, in hamsters (Ranhotra et al), 176

Maize, hardness; effect of NIR transmission-based selection on (Eyherabide et al), 775

Malt, food, production from hull-less barley (Bhatty), 75

Milling
—Canadian wheats; Fusarium head blight effect (Dexter et al), 695
—change in sulphhydryl-disulfide status during (Gobin et al), 495
—corn, effect of physical and chemical corn characteristics (Yuan and Flores), 574
—distribution of uric acid in fractions obtained from granary weevil-infested wheat (Ghaedian and Wehling), 628
—effect of flour storage on glutathione and breadmaking performance (Chen and Schofield), 1
—flour, image analysis of wheat grain (Berman et al), 323
—fractions; immunoassay for analysis of residues (Skerritt et al), 605

Mixing, wheat flour and ice to form undeveloped dough (Campos et al), 105

Moisture
—adsorption causes rice grains to fissure (Lan and Kunze), 222
—sorption; cause of textural changes in cereal foods (Harris and Peleg), 225

Mycotoxins, deoxynivalenol and zearalenone in milled fractions of (Rayas-Duarte et al), 381

Noodles
—starches; swelling and gelatinization of (Tester and Karkalas), 271
—HMW glutenin subunits of SWW and club wheats (Yamamoto et al), 215
—effects of gamma irradiation (Koksel et al), 506
—review of improved durum semolina/flour quality for potential use on pastamaking and breadmaking (Liu et al), 155
—from rice (Shih), 406
—separation of gliadins and identification of wheat-rye translocations by capillary zone electrophoresis (Lookhart et al), 547
—separation of monomeric proteins and polymeric glutenin of wheat flour (Fu and Sapirstein), 143
—weat, modifications due to flour chlorination (Duviau et al), 490
—rice, wheat, oats, separated by capillary electrophoresis (Lookhart and Bean), 81

Radiation, effect on copolymers of starch and plastics (Kollengode et al), 539

Relative humidity, effects on development of fissures in rice (Lan and Kunze), 222

Rheological properties
—of corn tortillas; influence of structural changes during alkaline cooking (Rodriguez et al), 593
—effect of amylose content on rice starch during heating, cooling, and aging by dynamic rheometry (Li et al), 415
—effects of gamma irradiation (Köksel et al), 506
—of soft wheat flours (Yamamoto et al), 215

Rheology
—dough, HMW glutenin subunits of SWW and club wheats (Czuchajowska et al), 338
—dough profiling method for determination of stickiness (Wang et al), 445
—oriental noodle dough, relationship to water absorption, formulatin and work input (Edwards et al), 708

Rice
—bran; and rice bran oil unsaponifiable matter, cholesterol-lowering properties (Kahlon et al), 69
—fissures from moisture adsorption (Lan and Kunze), 222
—grain yield and quality influenced by carbon dioxide (Seneweera et al), 239
—Japonica and Indica, nitrogen top-dressing effect on (Islam et al), 571
—late nitrogen fertilizer application effect on (Perez et al), 556
—protein concentrate (Shih), 406
—quality characteristics by whole-grain NIR reflectance spectroscopy (Delwiche et al), 257
—sensory quality evaluation (Champagne et al), 290
—starch; effect of amylose content on rheological property (Liu et al), 415
—starch; molecular weight distribution of (Lu et al), 5

Semolina, speck counting; imaging system for (Symons et al), 561

Shortening, use of monocaprin and tricaprin in breadmaking (Roach and Hoseney), 197

Sorghum
—grain; single kernel wheat characterization technology applied to (Pedersen et al), 421
—grain mold; resistance properties (Menkir et al), 613
—for ready-to-eat breakfast cereal (Cruz y Celis et al), 108

Spaghetti
—gamma irradiation effect on quality (Köksel et al), 506
—quality affected by process variables (Debbouz and Doetkott), 672
—Spaghetti, quality of, containing buckwheat, amaranth, and lupin flours (Rayas-Duarte et al), 381
—review of improved durum semolina/flour on potential use (Liu et al), 155

Physicochemical properties
—of barley starches (Vasanthan and Bhatt), 199
—of starches from African cereals (Jideani et al), 677

Plastic, radiation effect on copolymers of (Kollengode et al), 539

Protein
—adsorption of gliadin and water-soluble fractions from wheat onto methylated silica surfaces (Wannerberger et al), 499
—aggregates, nitrogen fertilization and maturaton effects on (Jia et al), 123
—concentration; spring wheat cultivars (Hucl and Chibbar), 756
—content in dairy ingredients (Erdogdu-Arnoeczky et al), 309
—of gluten, solubility, effect of temperature (Guerrieri et al), 368
—isolate; preparation and functional properties of, from defatted wheat germ (Hettiarachchy et al), 364
—nitrogen top-dressing effect on, in Japonica and Indica rice grains (Islam et al), 571
—review of improved durum semolina/flour quality for potential use on pastamaking and breadmaking (Liu et al), 155
—of rice (Shih), 406
—separation of gliadins and identification of wheat-rye translocations by capillary zone electrophoresis (Lookhart et al), 547
—separation of monomeric proteins and polymeric glutenin of wheat flour (Fu and Sapirstein), 143
—weat, modifications due to flour chlorination (Duviau et al), 490
—rice, wheat, oats, separated by capillary electrophoresis (Lookhart and Bean), 81
Starch — African cereals, structures and physicochemical properties (Jideani et al), 677
— amylopectin characterization (Bello-Perez et al), 12
— barley, heat treatment effects on digestibility (Xue et al), 588
— barley, physiochemical properties of (Vangnathan and Bhatty), 199
— comparison of U.S. and Australian flours (Wang and Seib), 167
— concentration; spring wheat cultivar (Hucl and Chibbar), 756
— damage; influence of growing conditions and cultivars (Lin and Czuchajowska), 551
— fatty acid introduction into (Kaneda et al), 244
— firming and water mobility in (Ruan et al), 328
— functionality after wet milling (Shandera and Jackson), 632
— in grain products; measure comparison (Marlett and Longacre), 63
— granule ghost microscopy (Obanni and BeMiller), 333
— glutenin and gliadin content; wheat cultivars (Borghi et al), 445
— oat, swelling and gelatinization of (Tortillas, corn, influence of structural changes on thermal, Theological, Texture, starch noodle, as affected by starch source (Kim et al), 302
— temperature, effects on wheat gluten (Guerrieri et al), 368
— sulfhydryl, change in status of wheat proteins during conditioning and firming and water mobility in starch-based systems during (Ruan et al), 328
— recovery; wet-milling for effect of pump rate and table slope (Singh and Eckhoff), 51
— resistant, dietary fiber values measured in cereals (Sambuccetti and Zuleta), 759
— resistant, effect on hamster blood and liver lipids (Ranhotra et al), 176
— shear-induced structure in starch solutions (Dintzis et al), 638
— sweet potato, pasting and gelatinization (Collado and Corke), 439
— wheat, NMR method to measure gelatinization (Mendes da Silva et al), 297
Steeping, corn, facilitated by sulfur dioxide at low pH (Biss and Cogan), 40
Storage — effects on lipids and sensory quality of oat flours (Molteberg et al), 579
— firming and water mobility in starch-based systems during (Ruan et al), 328
Sulfhydryl, change in status of wheat proteins during conditioning and milling (Gobin et al), 495
Temperature, effects on wheat gluten (Guerrieri et al), 368
Texture, starch noodle, as affected by starch source (Kim et al), 302
Tortillas, corn, influence of structural changes on thermal, rheological, and dielectric properties of (Rodriguez et al), 593
Triticale, flours; used in cookies, quality factors (Leon et al), 779
Uric acid — distribution in fractions obtained by milling granary weevil-infested wheat (Ghaedian and Wehling), 628
— stability when used as indicator of insect contamination during wheat extrusion (Ghaedian and Wehling), 625
Viscograph, evaluation of small quantity of wheat flour (Uno et al), 452
Wet milling — corn, acid effect on (Du et al), 96
— corn, laboratory countercurrent steep battery for (Yaptenco et al), 249
— corn procedure (Eckhoff et al), 54
— of corn, review of laboratory-scale and pilot plant-scale procedures (Singh and Eckhoff), 659
— corn starch functionality (Shanders and Jackson), 632
— effect of pump rate and table slope on starch recovery (Singh and Eckhoff), 51
— grain sorghum (Yang and Seib), 751
Wheat — adsorption of gliadin and water-soluble fractions from, onto methylated silica surfaces (Wannerberger et al), 499
— Canadian, Fusarium head blight effect on milling and baking (Dexter et al), 695
— classification by visible and NIR from single kernels (Delwiche and Massie), 399
— diploid grain, flour, dough, and bread characteristics (Borghi et al), 208
— dough rheology of HMW gluten subunits of (Czuchajowska et al), 338
— dough; stickiness measurement using dough profiling method (Wang et al), 445
— durum, gamma irradiation effect on (Köksel et al), 506
— durum, potential millability (Fares et al), 232
— durum, review of improved semolina/flour quality for potential use in pastamaking and breadmaking (Liu et al), 155
— end products; immunoassay for analysis of residues (Skerritt et al), 605
— gluten; effects of HMW gluten subunits on rheological properties of (Schropp and Wieser), 410
— grain quality; changes due to doubling level of atmospheric carbon dioxide (Blumenthal et al), 762
— heat and moisture treatment of, reduced browning in raw oriental noodles (Vadlamani and Seib), 88
— hulled, characteristics of meal from (Piergiovanni et al), 732
— identification of wheat-rye translocation lines (Lookhart et al), 547
— mill fractions; image texture analysis for discrimination of (Zayas and Steele), 136
— milled fractions, deoxynivalenol and zearalenone distribution in (Trigo-Stockli et al), 388
— proteins; change in sulfhydryl-disulfide status during conditioning and milling (Gobin et al), 495
— proteins; modifications due to flour chlorination (Duviau et al), 490
— proteins separated by capillary electrophoresis (Lookhart and Bean), 81
— quality response to disease control (Herrman et al), 235
— soft, predicting a hardness measurement using single-kernel characterization system (Gaines et al), 278
— soft, quantities of gliadins related to rheological properties and baking qualities (Hou et al), 352
— soft, quantities of glutenin related to rheological properties and baking qualities (Hou et al), 358, 515
— soft, rheological properties and baking qualities (Yamamoto et al), 215
— Soissons, growing location effect on protein polymerization, and milling (Hou et al), 352
— Soissons, effects of nitrogen fertilization and maturation on protein aggregates and breadmaking (Borghi et al), 123
— Soissons, growing location effect on protein polymerization, relation to breadmaking (Jia et al), 526
— spelt cultivars, nutritional profile (Ranhotra et al), 533
— spring, variation for starch concentration in (Hucl and Chibbar), 756
— starch damage in (Lin and Czuchajowska), 551
— vitamin B6 and pyridoxine glucoside content of (Sampson et al), 770
— whole-grain image analysis, milling quality (Berman et al), 323
— wheat germ, protein isolate from, preparation and functional properties of (Hettiarachchy et al), 364
Yeast, wine yeast preferment and bread aroma (McKinnon et al), 45
Zein — composition; effect of NIR transmission-based selection on (Eyherabide et al), 775
— glass transition and cross-linking effect on rheological properties of (Madeka and Kokini), 433
Zinc, deficiency, body weight (Saldamlı et al), 424