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Starch is one of the most important poly-
mers for humanity: It comprises the 

largest single component of our food ener-
gy, and is also an important industrial poly-
mer, for example, it is used in papermaking, 
biofuels, and the food and pharmaceutical 
industries as an additive with diverse uses. 
On one level, it is simple: a polymer of 
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glucose (or of anhydroglucose, to be more 
precise). However, it is a mix of two poly-
mer architectures: amylose—largely linear 
with a few long-chain branches—and amy-
lopectin, which is highly branched. Be-
cause of this branching, it shows a 
bewildering structural complexity. Starch 
structure (including amylose to amylopec-
tin ratio and other structural features) dic-
tates starch properties, such as how rapidly 
and where a food is digested, or how well a 
modified starch might serve as a thickener 
or dispersing agent. The cereal food indus-
try commonly uses molecular weight as a 
means of quality assurance. However, 
things are not that simple.

First, “molecular weight” in this context 
usually means an average such as the 
weight-average molecular weight (Mw). 
However, any starch sample contains a vast 
range of molecular weights and the distri-
butions of these molecular weights can be 
important. Two starches with the same Mw, 
but with very different distributions, could 
have quite different rheological properties. 
Average size is not everything.

Second, devices commonly used for 
measuring molecular weight, especially 
size exclusion chromatography (SEC, also 
known as gel permeation chromatography 
[GPC]), use separation by size, not by mo-
lecular weight. Starch is a branched mole-
cule and two molecules with the same size 
can have different molecular weights if 
their branching structure is different. Thus, 
for starch, there is no unique correspon-
dence between size and molecular weight. 
Some popular instrumentation packages 
purport to give molecular weight distribu-
tions, whereas in actuality, they produce a 
more complex quantity.
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Third, measuring molecular weight or 
molecular size distributions requires that 
the starch be fully dissolved (dispersed as 
separate molecules) without degradation. 
As will be seen, that is often a problem.

Fourth, there are huge discrepancies on 
starch molecular weights in the literature, 
especially for amylopectin. A literature 
search for “molecular weight of waxy 
maize starch” gives results ranging from 
106 to 108. Clearly, this situation is com-
pletely unsatisfactory.

Thus, not only is molecular weight char-
acterization a problem, but many practitio-
ners are in fact not characterizing what 
they think they are!

To this end, the International Union of 
Pure and Applied Chemistry (IUPAC) has 
set up an international task group on “Crit-
ically evaluated techniques for size separa-
tion characterization of starch,” whose aim 
is to reach an agreement among world ex-
perts on optimal characterization technolo-
gies. This group includes specialists in 
food science and size-separation analytical 
chemistry and is drawn from industry (in-
cluding starch companies and manufactur-
ers of analytical equipment) and academia. 
As a first step toward its technical goal, the 
group has established what the various 
problems are (6) as a prelude to working 
toward their solution. Solving outstanding 
problems is important for producers, man-
ufacturers, and consumers.

What Does Industry Need to 
Know and Why?

The importance of both the average mo-
lecular weight and radius of gyration of 
starch has long been appreciated by indus-
try. Here are some examples.

For beverage thickeners, molecular 
weight that is too high results in a drink 
that is too viscous with a slimy or chalky 
texture, while a molecular weight that is 
too low results in a beverage with insuffi-
cient body (16). For resistant starch, the 
molecular weight needs to be in the cor-
rect range for suitable digestive properties 
and control retrogradation (15). To exem-
plify an important mining application, in 
the recovery of alumina from bauxite, the 
starch needs to be at least 2 × 106 in mo-
lecular weight, with too low a value result-
ing in a poorer quality of aluminum from 
the processing (13). In healthcare, starch 
is used in enteral nutrition solutions; too 
low a molecular weight results in brown-
ing problems and a too rapid release of 
calories, while too high of a value could 
result in the clogging of the tubing and 
thus a reduced calorie supply (2).

Although these are just a few of many 
examples in which these properties are 
important to a product or process, the key 

question remains: What is the molecular 
weight of the starch? Depending on how 
this is measured, the result may be differ-
ent, so how do we obtain a reliable, and 
more importantly, accurate, value? More-
over, there is virtually no knowledge or 
understanding of how the distributions, 
rather than just average values, affect 
properties of interest.

Doing the Right Measurements 
with Current Knowledge

Many techniques used by industry can 
yield results that are meaningful for the 
desired goal, given current best-practice 
implementation.

•	 To dissolve all of the starch without 
degradation, starch must be dissolved 
completely and molecularly to char-
acterize its size and molecular weight. 
While dissolving a starch sample is 
easy (e.g., boiling in concentrated 
NaOH for a long time), some facile 
procedures result in degradation. For-
tunately, some starches are easy to 
dissolve without degradation, espe-
cially modified starches used for 
many industrial purposes (indeed, 
ready dissolution is often one of the 
reasons for the modifications).

•	 Meaningful molecular weights can be 
measured with care under the right 
circumstances. Mw can be measured 
by light scattering provided that steps 
are taken to ensure complete dissolu-
tion of the sample without degrada-
tion (6). Obtaining and processing 
light-scattering data suitable to yield 
Mw requires particular care (1). For 
example, it is necessary to ensure that 
the concentration is in an appropriate 
range (dilute, but not too dilute) and 
that the data treatment uses the cor-
rect value of the refractive index in-
crement (how refractive index varies 
with polymer concentration [dn/dc]) 
in the particular solvent and tempera-
ture. Mw can also be obtained using 
SEC, but here the problem of degrad-
ing the amylopectin component 
through shear scission in SEC is ex-
tremely hard to avoid (4). Thus, SEC 
can be used to find Mw only for small-
er starch molecules (amylose and de-
graded starches).

•	 Do distributions matter? It is reiterat-
ed that industry currently uses aver-
age molecular weights, not their 
distributions. It would not be surpris-
ing if distributions as well as averages 
were important for quality assurance, 
which needs case-by-case testing.

It is also essential to recall that SEC 
does exactly that: it separates by size, not 
by molecular weight. Because there is no 

unique relation between these two quanti-
ties for a branched polymer such as starch, 
in general, a given elution slice will con-
tain a range of molecular weights. Light-
scattering detection gives an absolute 
molecular weight, but this quantity is an 
average Mw. SEC data, which include 
light-scattering detectors, can be manipu-
lated with manufacturer-supplied software 
to plot distributions as a function of mo-
lecular weight, but a) this is the average 
Mw; and b) it is only the true molecular 
weight if the correct dn/dc is available.

Despite these concerns, the use of data 
for a series of samples for comparative 
purposes among samples of similar type is 
still very useful, even though the absolute 
values may not be correct.

Solving Current Problems
Solubilizing Starch Without Hurting It

Characterizing the molecular weight 
and/or size (distributions) of starch re-
quires that the characterization process 
fully dissolves the starch as separate mol-
ecules and does this without degrading 
them. While processed or modified starch-
es can be easy to dissolve without damage 
(unless the modification involved covalent 
cross-linking), it is a different story with 
native starch. The granule itself consists of 
a layered semicrystalline structure. In or-
der to extract the starch for analysis, the 
granule first needs to be broken down, 
then the starch itself needs to be dis-
solved.

Many techniques exist to extract and 
solubilize the molecules from starch gran-
ules. Aqueous or organic (dimethylsulfox-
ide) solvents can be used for this purpose, 
with or without salt ions (LiCl, LiBr). Al-
kali dissolution methods have been used 
previously, as has extraction using urea. 
The method of dissolution—thermal (high 
temperature, microwave) or mechanical 
treatment (sonication, stirring, shaking)—
also needs to be considered. Amylopectin 
is a huge molecule and prone to shear scis-
sion. It has not yet been established which, 
if any, of the techniques currently in use 
can fully dissolve native starch as isolated 
molecules without degradation. The IU-
PAC task group has set this as its first prob-
lem to solve.

Imperfect Separation
Size separation is never perfect in prac-

tice: the eluent in a given narrow “slice” 
will contain a (hopefully narrow) range of 
different sizes. An example of this is band 
broadening in SEC, where this imperfect 
behavior arises from molecular diffusion, 
multiple flow paths along the column, etc. 
(3,12). With modern separation techniques 
and equipment, this effect is relatively 
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only be undertaken making various as-
sumptions as to the nature of the distribu-
tion. Some devices (such as those which 
have a means of operating in so-called re-
search mode) enable different models and 
assumptions to be tested and if the distribu-
tion generated is not too dependent on the 
type of assumptions made, it is semiquan-
titatively reliable. Unfortunately, some de-
vices on the market include software that 
yields a purported distribution, but do not 
permit the underlying assumptions to be 
tested, and in such cases, while the aver-
ages from these devices are reliable, con-
versely, the distributions are not.

Size-Separation Methods
Size Exclusion Chromatography

Size exclusion chromatography (SEC or 
GPC) is a deservedly popular method for 
determining averages and distributions of 
both size and molecular weight. For the 
amylose component of starch, this works 
very well (as long as the columns and oper-
ating conditions are carefully selected), but 
for the amylopectin component, shear is 
very likely to occur (4). This gives a false 
distribution for the amylopectin region.

Asymmetric-Flow Field Flow 
Fractionation 

Asymmetric-flow field flow fraction-
ation (AF4) is available commercially and 
relies on the diffusion of molecules and 
particles against a flow field into parabolic 
flow inside a channel. The lack of a sta-
tionary phase in the channel removes the 

effect of shear scission present in SEC; 
however, due to the porous nature of the 
membrane, some material could be lost 
through these pores. In addition, there can 
also be an interaction between the mole-
cules and the membrane material, result-
ing in nonideal separation. 

Thermal Field Flow Fractionation
Thermal field flow fractionation (ThFFF) 

is similar to AF4 in that the separation is 
achieved by the diffusion of molecules 
against a flow field, except that for ThFFF, 
the field is generated by the temperature 
difference between a hot and a cold sur-
face. This method removes the requirement 
for a membrane, and so removes the lower 
size cut-off. However, the technique needs 
optimization for starch (e.g., to avoid ag-
gregation on the cold wall), and the separa-
tion parameter (size parameter) for ThFFF 
has not been established; determining this 
is another task for the IUPAC task group.

Hydrodynamic Chromatography
Hydrodynamic chromatography (HDC) 

is a technique (for which instruments, but 
not starch-optimal columns, are available 
commercially) that can be considered 
somewhere between SEC and AF4. A sta-
tionary phase is present inside the column, 
as with SEC, with the separation of the 
molecules occurring by the diffusion of 
molecules into different flow streams. 
Seeing how this technique can be useful 
for the size separation of starch is an active 
area of research by various groups.

Fig. 1. Characterizing starch, a highly branched molecule, is analogous to characterizing the 
trees in a forest by first separating by size (or height, for trees), then using three separate detec-
tors to find, for the trees of each height, the number (distribution), the total weight (distribution), 
and the weight-average weight. (In the figure, DRI is differential refractive index and MALLS is 
multiple-angle laser light scattering.)

small, and has only minor effects on aver-
age molecular weights and the trends in 
distributions. Band broadening needs to be 
taken into account only in specialized 
comparisons of distributions with postu-
lated functional forms.

In addition, some authors use the term 
“incomplete separation” to refer to the fact 
that size separation does not separate by 
molecular weight and, therefore, for a 
branched polymer, there will be a range of 
molecular weights in a given size slice, 
even with perfect separation. “Incomplete” 
is not a useful term here, because it is an 
effect inherent in the physical technique 
and, for branched polymers, is always 
present even if the separation technique is 
perfect.

Size or Molecular Weight?
The size of a branched polymer in solu-

tion can be defined in a number of ways, 
the most common of which is the radius of 
gyration (Rg). This and any other size 
measurement is an average of all of the 
different branching structures and confor-
mations adopted by the molecules in the 
sample. Different techniques separate by 
different size parameters (and the separa-
tion parameter can also vary with the mode 
of operation of a given technique). Con-
fusingly, these separation sizes are always 
defined as hydrodynamic volume (Vh), 
whose IUPAC definition (8) explicitly de-
pends on the separation technique. For 
SEC, Vh is proportional to the product of 
intrinsic viscosity and number-average 
molecular weight (Mn) (11). However, for 
some types of field-flow fractionation, it is 
the center-of-mass diffusion coefficient 
(5), related to a corresponding radius by 
the Stokes-Einstein equation. While all of 
these “sizes” are proportional to Rg, with a 
proportionality factor of the order of unity, 
the actual value of this factor depends on 
the polymer architecture (and possibly on 
the size as well), and is in general unknown 
for branched molecules such as those 
found in starch. Because light scattering 
gives Rg for a polymer unambiguously, 
these relations can be determined directly 
(14), but instrumental limitations often 
preclude obtaining an accurate value, e.g., 
for smaller chains of amylose. Further-
more, the size of a starch chain in solution 
depends on the eluent and the temperature, 
as well as the sample.

While the Mw of starch can be measured 
unambiguously by light-scattering tech-
niques, these techniques cannot give distri-
butions from a sample (unless that sample 
has first undergone size separation)—there 
is no unique solution for the inversion of 
light-scattering data from a disperse sample 
to a size distribution. Such inversions can 
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Further separation by other separation 
parameters is starting to become possible 
(so-called two-dimensional techniques 
[9,10]), but as yet unachieved for starch 
and unlikely to be ready for commercial 
use for some time.

What Do We Do Now?
Many questions exist as to what needs 

to be analyzed for a particular purpose, 
and what information in this regard can be 
obtained using the various techniques. 
There is no best technique for starch, be-
cause the optimal technique depends on 
what is needed for a particular purpose. 
Some significant technical issues are out-
standing, many of which have been listed 
above as goals for the IUPAC task group 
working on this project. 
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Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC), 

also available commercially, has been used 
for some time for size separation of starch, 
but the method has limitations in both es-
tablishing the size separation parameter in 
molecular terms and in poor separation 
(different sizes leaking into the same 
zone).

The comparison between and the ap-
plicability of these different techniques is 
again a priority for the IUPAC task group. 
In addition, a major task is to identify 
causes of variability, such as the presence 
of nonstarch components, poor size separa-
tion, aggregation, incomplete dissolution, 
incomplete separation (e.g., the exclusion 
limit of an SEC column), and shear scis-
sion.

What Do the Detectors Tell Us?
Aside from physically separating or frac-

tionating the samples by a property related 
to their size using any one of the above 
techniques, it is also important to consider 
the detection methods available. Three 
types of detectors are widely used: dif-
ferential refractive index (DRI), multiple-
angle laser light scattering (MALLS), and 
in-line viscometry. For linear polymers, 
these effectively give the same informa-
tion (apart from instrumental limitations); 
however, for a branched polymer such as 
starch, the information from the three de-
tection types is complementary—the more 
types of detector, the more information 
about the system.

For branched polymers, even if one has 
perfect size separation (whatever the sepa-
ration parameter might be for a particular 
technique), there will still be a range of 
molecular weights and branching structures 
of chains in a size slice. It is analogous to 
characterizing the trees in a forest. Suppos-
ing one separates the trees by height (“size” 
for the purpose of illustration). A collection 
of trees with the same height will have a 
range of branching structures and thus 
weights (Fig. 1). Different detectors then 
can give further information about the trees 
in this range. The number distribution of 
chains (equivalent to the total number of 
trees of a given height) is given by the vis-
cometric signal (7), while the weight distri-
bution (the total weight of trees with a 
given height) is found from the DRI detec-
tor. The average weight of trees of a given 
height (Mw) is found from MALLS.

For commercial and scientific uses of 
starch, the application of these different 
types of distributions for biosynthesis-
structure-property relations is just starting 
to be explored, and has considerable future 
potential for value-added commercial 
products and processes.
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