Grain Traceability and Its Role in Food Safety

T. Herrman and J. A. Thomasson
Soil and Crop Sciences, Biological & Agricultural Engineering
Texas A&M University
College Station, TX, U.S.A.

“T o retain their comparative advantage in the global market and address domestic food safety and quality issues, the U.S. grain producers and handlers are implementing methods to produce, handle, and market traits specific grains, including documentation systems that trace raw materials back to the farm” (8). This statement captures one driver in the adoption of traceability systems over the past two decades by the cereal and oilseed industries. The importance of traceability in global trade and food safety was codified by both the European Commission (EC) and the United States in 2002 through EC regulation 178/2002 (2) and the U.S. Public Health Security and Bioterrorism Preparedness and Response Act (17), respectively.

EC regulation 178/2002 (2) lays out the general principles and requirements of food law and defines traceability as “The ability to trace and follow a food, feed, food-producing animal or substance intended to be or expected to be incorporated into a food or feed, through all stages of production, processing and distribution.” Under article 18, the regulation further specifies that “Food and feed business operators shall be able to identify any person from whom they have been supplied with a food, a feed, a food-producing animal, or any substance intended to be, or expected to be, incorporated into a food or feed. To this end, such operators shall have in place systems and procedures which allow for this information to be made available to the competent authorities on demand.”

Grain traceability systems in the United States were initially developed based on economic incentives associated with genetically modified crops and value-enhanced marketing (7). Numerous patent applications filed around the turn of the 21st century involving grain markers employed a concept similar to one used during the 1970s, in which paper tags were inserted in grain to address the problem of grain theft. The promulgation of a rule for “Establishment and Maintenance of Records for Implementing,” section 306 of the U.S. Bioterrorism Act of 2002, requires a step forward and backward recordkeeping activity for tracing grain movement, effectively shifting the focus of traceability to recordkeeping within the grain industry (4).

Similar examples of recordkeeping requirements are included in the Canadian Can-Trace system (1) and International Standards Organization (ISO) food safety standard 22005 (11). Other private safety standard programs for feed include the American Feed Industry Association’s Safe Feed Safe Food, the EU Association of Specialty Feed Ingredients and Their Mixtures’ FAMI QS scheme, and the GMP+ International Feed Safety Assurance scheme. These programs facilitate adoption of national regulatory requirements that align with the Codex Alimentarius Code of Practice on Good Animal Feeding (CAC/RCP 54-2004), which includes traceability.

New regulations stress the importance of traceability in global trade and food safety.

An effective system must mark and rapidly identify the origins of commingled grain in a bulk shipment.

Recent advances in the development of tracers offer new possibilities for improving tracking of grain through the supply chain.

U.S. Food Safety Modernization Act and Traceability

Until the U.S. Food Safety Modernization Act was signed by President Obama in 2011, federal regulatory officials in the United States lacked the authority to review company records to ensure conformance with traceability requirements. In the past, food safety recalls, which rely on traceability, have been voluntarily implemented by firms following guidance by the U.S. Food and Drug Administration (FDA) or the U.S. Department of Agriculture (USDA) (3,6). The first use of the authority granted to the FDA under section 306 of the Bioterrorism Act of 2002 involved the adulteration of pet food containing gluten meal and rice protein imported from China. The pet food was deliberately adulterated with melamine and cyanuric acid to boost the apparent level of protein. These two compounds formed crystals that were linked to acute renal failure in pets (14).

The deliberately introduced chemical adulterants (melamine and related compounds) ended up in more than 5,000 products from 12 companies, and waste streams from the manufacturing process ended up in feed intended for animals destined for the human food supply. The melamine incident served as a tipping point in the U.S. public’s alarm involving imported products and food safety and resulted in numerous actions, including the formation of an Interagency Working Group on Import Safety, which authored an Action Plan for Import Safety (10), and a Food Protection Plan authored by FDA personnel (5). The principles pertaining to traceability highlighted in these documents are summarized in Table I.

The U.S. Food Safety Modernization Act of 2011 (Public Law 111-353) incorporates many of the new authorities proposed in the Import Safety Action Plan and Food Protection Plan, including traceability (Table II). This statute provides FDA investigators with the authority “to have access to and copy all records relating to such article” for products deemed reasonably likely to cause serious adverse health consequences or death to humans or ani-

doi:10.1094/CFW-56-4-0157
© 2011 AACC International, Inc.
Table II. Food Safety Modernization Act sections, key provisions, and actions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Key Provision</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Inspections of records</td>
<td>Reasonable probability of adverse health effects</td>
<td>Access to and copy all records</td>
</tr>
<tr>
<td>103</td>
<td>Hazard analysis and risk-based preventive controls</td>
<td>Corrective actions may be taken if preventive controls are ineffective</td>
<td>All affected food is prevented from entering commerce</td>
</tr>
<tr>
<td>204</td>
<td>Enhancing tracking and tracing of food and recordkeeping</td>
<td>Pilot projects</td>
<td>Develop methods for rapid and effective tracking and tracing of foods</td>
</tr>
<tr>
<td>206</td>
<td>Mandatory recall authority</td>
<td>Secretary may require a recall</td>
<td>Establishment immediately ceases distribution of article</td>
</tr>
</tbody>
</table>

There are many engineering challenges associated with meeting these objectives, not the least of which is developing a tracer particle that is durable and does not adulterate the grain. Research into this objective has produced two potential types of tracers made with a pharmaceutical-grade tablet press: one composed of a particular starch and sugar combination, and the other composed of a particular sugar-based material. Both types are food grade and contain no protein, minimizing concerns about allergic reactions and meeting European maize product threshold requirements for genetically modified organisms.

A dispensing system that inserts tracers into the grain during harvest has been developed and tested by a team of research engineers and scientists from Kansas State University who collaborated on the traceability project (9). Tests showed that the tracers remained with the grain during repeated transport and handling and did not become segregated. Research on the hardness of the tracers showed that they resisted breakage that might occur during mechanical delivery of the tracers into the grain and as they flow along with the grain (12). The surface texture of the tracers enables them to be marked with identifica-
tion codes that can be read by optoelectronic scanning devices.

One of the challenges to overcome has been the imprinting of a code that is readable, durable, and carries adequate information onto the tracers. Various types of code, printing techniques, food-grade inks, and application methods are being studied. An example of the current state of the research is shown in Figure 3. Readability levels with off-the-shelf bar-code scanners are currently very high, but readability must be maintained after handling, so code durability tests are being planned. The resulting tracers will have great potential for application in a comprehensive grain-tracing system. It has been proposed that tracers would be inserted into grain at a rate of roughly one tracer per kilogram of grain; the fractional weight of the tracers in grain would be infinitesimal. Ultimately, the tracers and associated system for dispensing, sampling and scanning, and database management are expected to add roughly US$0.05 to the cost of a bushel of grain.

Tests to validate the ability to identify grain in expected sample sizes using the newly designed tracers also need to be conducted at a grain-handling facility. Tracers would be dispensed at a specified rate either onboard a harvest combine or into flowing grain at a grain elevator. To simulate tracer movement and behavior during grain handling and storage throughout the system, grain blended with tracers would repeatedly go through a loading truck and grain elevator bins with different capacities. Representative samples from elevator bins and a loading truck would be collected and screened with appropriate aperture-size sieves to separate the tracers. The tracers then would be scanned for readability. The development of this technology has been supported, in part, by the USDA National Research Initiative’s Plant Biosecurity Program in a project titled “Global Tracing and Recall System for US Grains: Proof-of-Concept.”

Traceability and Aflatoxin Risk Management

In Texas, aflatoxin continues to present a food safety challenge for the grain and feed industries (Table III). In 2010, the Office of the Texas State Chemist (OTSC) identified more than 3.2 million bu of corn containing >300 ppb aflatoxin at 24 locations in the state. Aflatoxin is a group 1 carcinogen, as defined by the International Agency for Research on Cancer (15). Aflatoxin contamination is both a food safety and public health issue and at high doses can lead to serious illness, including acute liver cirrhosis and death in both humans and animals. At sublethal doses, aflatoxin exposure can increase the risk of liver cancer.

Tracing aflatoxin-contaminated corn from its point of origin through the market channels to its end-use remains a challenge. High levels of aflatoxin contamination not only pose a risk to animal and human health, the high prevalence of this group 1 carcinogen also suppresses the price for Texas grown corn containing aflatoxin concentrations below the 20 ppb action level prescribed by state and federal regulations.

In Texas, aflatoxin-contaminated cereals and oilseeds exceeding 20 ppb aflatoxin must be labeled as feed and channeled to the appropriate end-use. Aflatoxin contamination exceeding 300 ppb is managed through blending and disposition plans that involve regulatory oversight by OTSC. To better manage the risk of aflatoxin-contaminated corn, OTSC has initiated several risk management activities to ensure food safety and preserve market confidence.

In 2010, OTSC required that all grain elevators handling aflatoxin-contaminated

![Fig. 1. Tracers for insertion into grain can be marked with an information-carrying code such as a bar code.](image1)

![Fig. 2. Traceability scheme, including sample size estimates, to identify commingled grain lots (e.g., farms) in the market system.](image2)

![Fig. 3. Two-dimensional data-matrix code printed on tracers.](image3)

Table III. Aflatoxin incidence in Texas corn by year

<table>
<thead>
<tr>
<th>Aflatoxin Level</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤20 ppb</td>
<td>63.6</td>
<td>87.0</td>
<td>62.9</td>
<td>63.2</td>
<td>61.6</td>
</tr>
<tr>
<td>21–300 ppb</td>
<td>30.2</td>
<td>12.7</td>
<td>35.0</td>
<td>31.4</td>
<td>32.5</td>
</tr>
<tr>
<td>301–500 ppb</td>
<td>2.1</td>
<td>0.2</td>
<td>0.7</td>
<td>2.6</td>
<td>3.9</td>
</tr>
<tr>
<td>≥500 ppb</td>
<td>4.1</td>
<td>0.1</td>
<td>1.4</td>
<td>2.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>
grain hold a license with OTSC and report the amount of aflatoxin-contaminated grain received and its disposition. This action was implemented to ensure compliance with the Food and Drug Administration Amendment Act (FDAAA) of 2007 that requires firms to report shipment of contaminated product using an online porthole called the Reportable Food Registry. Grain containing >20 ppb aflatoxin and shipped without the appropriate label designating the amount of aflatoxin and the product end-use is adulterated and falls under the FDAAA reporting requirement. OTSC implemented the new licensing requirement to enable the grain industry to achieve full compliance with FDAAA, thereby minimizing reportable incidents.

In 2011, OTSC implemented a one-sample strategy (16) as a second step to achieve full compliance with FDAAA, fulfill pending requirements of the U.S. Food Safety Modernization Act, and minimize market risk. Each truckload of corn delivered to a commercial grain elevator may be sampled and tested for aflatoxin three or more times for grain purchasing, crop insurance, and regulatory oversight. Multiple tests yield different aflatoxin results and create uncertainty in the market. Aflatoxin is not uniformly distributed in corn, and it is measured in parts per billion. Consequently, a 30% variation between aflatoxin samples is common when a truckload of corn is tested multiple times using official procedures. When official procedures are not followed, a 60% variation between aflatoxin sample measurements has been documented by OTSC field investigators.

To minimize the negative market impact of multiple aflatoxin measurements and nonuniform adoption of official procedures, the one-sample strategy utilizes a single corn sample for purchasing, regulatory, and crop insurance decisions. This voluntary program administered by OTSC incorporates USDA-approved sampling methodology outlined in the Risk Management Agency Loss Adjustment Manual. Program participants must use Federal Grain Inspection Service-approved test kits validated by OTSC to measure aflatoxin up to 1,000 ppb. OTSC field investigators conduct onsite training of grain industry personnel on how to perform grain sampling and aflatoxin testing using official procedures and serve as the competent authority to ensure that official procedures are followed during harvest. The one-sample strategy includes proficiency testing to ensure accurate aflatoxin measurement by program participants and adoption of quality control techniques, including the daily use of control samples and scale calibration coupled with unannounced inspections, record reviews, and verification of aflatoxin test results using retained samples.

The adoption of improved tracking and tracing technology for Texas grown corn will augment steps taken by feed control officials, grain producers, and commercial grain handlers to manage the risk associated with aflatoxin and help reverse the negative price impact encountered in many grain markets in the state.

Reduction to Practice

A need exists to extend the tracing work performed by Texas A&M in collaboration with USDA ARS in Manhattan, KS, into the reduction to practice phase of technology development. Section 204 of the U.S. Food Safety Modernization Act, “Enhancing Tracking and Tracing of Food and Recordkeeping,” directs the secretary to establish pilot projects involving tracing systems for high-risk products. One possible pilot project would involve the use of grain tracers in aflatoxin-contaminated grain. Such a project would involve the following steps:

1) Insert tracers designating the toxin level and grain origin into loads of aflatoxin-contaminated grain.
2) Sample outbound shipment of grain to confirm the presence of tracers and verify the aflatoxin level of the corn.
3) Sample grain at the point of destination, scan tracers to identify the source of grain and level of aflatoxin, and evaluate the level of aflatoxin in the contaminated grain.

The proposed project would be repeated at multiple grain elevators that segregate grain based on aflatoxin level and at grain elevators that commingle grain containing different levels of aflatoxin. Performance indices would include measuring the presence of tracers, the ability to read the code on the tracer, and aflatoxin level measurement.

Additionally, a time and cost analysis of the pilot project should be performed and compared with the market discount for Texas corn compared with corn that originates from the Midwestern United States via rail. The use of tracers would provide additional verification of recordkeeping tracing requirements contained within the Food Safety Modernization Act.

Summary

Significant advances in tracing grain have resulted from regulatory requirements and market forces. Most tracing systems rely on recordkeeping, which lacks precision when applied to bulk commodities such as grain in which commingling is common. Recent advances in the development of coded caplets made of food-grade material offer new possibilities for improving tracking and tracing of grain. Proposed use of grain tracers in aflatoxin-contaminated corn will augment existing practices to manage risk, provide greater market confidence, and may lead to future commercialization opportunities.

References

Tim Herrman serves as the state chemist and director of the Office of the Texas State Chemist. The office includes two units, the Texas Feed and Fertilizer Control Service and the Agricultural Analytical Service. The Texas Feed and Fertilizer Control Service is the state agency that regulates the distribution of 20 million tons of feed and fertilizer in Texas by more than 4,000 facilities and guarantors located in Texas, the United States, and abroad. The Agricultural Analytical Service supports activities of the Office of the Texas State Chemist, Texas A&M research faculty, the U.S. Food Emergency Response Network, and the U.S. Food and Drug Administration through chemical and microbiological analyses. Herrman is a professor in the Department of Soil and Crop Sciences, Texas A&M University, and leads a research and education program in regulatory science. Herrman is an AACC Intl. member and can be reached at tjh@otsc.tamu.edu.

J. Alex Thomasson has been a professor in the Department of Biological and Agricultural Engineering at Texas A&M University since 2005. Earlier in his career he was a faculty member with Mississippi State University and a research engineer with USDA-ARS. His research specialty is developing sensing and identity-preservation technologies for agricultural production and processing, and he has worked in the area of grain traceability since 2005. He has taught courses in optoelectronic sensor development, measurement and control systems, and information technology for agricultural systems, among others. He earned B.S., M.S., and Ph.D. degrees at Texas Tech University, Louisiana State University, and the University of Kentucky, respectively. Thomasson is a registered professional engineer and a long-time member of the American Society of Agricultural & Biological Engineers, serving on committees in precision agriculture, robotics and image processing, cotton engineering, and issues management and social action. Thomasson can be reached at thomasson@tamu.edu.