The Glycemic Index as a Measure of Health and Nutritional Quality: An Australian Perspective

Jennie Brand-Miller
University of Sydney
Sydney, NSW, Australia

Over the past decade, the glycemic index (GI) concept has been embraced by health professionals and consumers in Australia. In a 2005 survey, more than 80% of Australian grocery shoppers were aware of the “GI,” and half were very likely to use the GI rating when choosing food (Tables 1 and 2). When asked which GI rating is most beneficial to general health (low, medium or high GI), nearly 60% of respondents checked the correct answer. Food labels with GI values began appearing in 1990, with an accelerating trend in the past few years. In 2001, the GI Symbol Program was launched as a not-for-profit initiative of the University of Sydney, Diabetes Australia, and the Juvenile Diabetes Research Foundation (www.gisymbol.com). Currently, about 100 products on the Australian, New Zealand, and overseas market meet strict nutrient and other quality criteria and are licensed to carry the certified mark (Fig. 1). The long-term goal is to have one internationally recognized GI symbol to ensure that scientifically credible and balanced messages are promoted to the public.

A Fad or a Science-Based Diet?

Is the GI just a passing fad, similar to the “low carb” phenomenon? The facts argue otherwise. From controversial beginnings in the 1980s, the GI has stood the test of time and scientific scrutiny. Officially, the current recommendations of FAO/WHO (19) and major diabetes associations, including Diabetes UK (32), the Canadian Diabetes Association (14), and Diabetes Australia (17) refer to the GI. Most recently, the American Diabetes Association recognized that the use of the GI “can provide an additional benefit over that observed when total carbohydrate is considered alone” (36). The application of the GI in other areas—weight control (18), sports performance (12), cardiovascular disease (11), cancer prevention (22,24) and cognitive function (34) is the subject of ongoing research. Why would the GI be important in so many areas?

Defining the Glycemic Index

Carbohydrates are the main component in food responsible for the rise in blood glucose level after eating. But two meals, one with twice the carbohydrate content of the other, can produce similar levels of glycemia (9). Weight for weight, those carbohydrates that are digested and absorbed slowly produce less glycemia and insulinemia than those that are digested rapidly. Distinguishing carbohydrates on this basis (i.e., their glycemic impact) has yielded more useful insights than classification as sugars or starches or as simple vs. complex (indeed, such classifications don’t predict blood sugar responses at all). The GI can be viewed as a property of the carbohydrates in a food, i.e., their ability to raise blood glucose in the hours after consumption. Surprisingly, most whole-grain cereal products, including high-fiber breads and breakfast cereals, have high GI values, while legumes, pasta, dairy products, and many fruits have low GI values (21). The state of gelatinization of the starch in food is a major determinant of the GI. Foods containing sugars display a wide range in GI values from low (e.g., sweetened yogurt) to high (e.g., jelly beans).

GI testing is a standardized procedure undertaken in human subjects who consume food portions containing 50 or 25 g of carbohydrate. The published GI is the average value obtained for about 10 subjects (for details, go to http://www.
glycemicindex.com/). Just as with any testing procedure, modifications affect the final values obtained (10), and there is a good case for national and international standards.

Criticism of the GI

The validity of the GI concept is often challenged. The criticisms include human variability (day-to-day variation in glucose tolerance or differences between individuals) as well as food factors, such as changes due to cooking, processing, or ripeness of the food. Different GI values for the same food can result from true differences (one variety of rice versus another) or by methodological artifacts. These limitations apply equally well to carbohydrate counting and other methods used to manage blood glucose levels. Food composition itself is variable, and the GI should not be held to higher standards than other nutrient factors. In GI testing, repeat testing of the reference food (two or three separate tests) reduces the effect of day-to-day variation, while increasing the number of subjects improves the standard error around the mean GI. Apparent variation between different individuals reflects, not real differences among people, but day-to-day variability within individuals. With repeated testing of a given food, all individuals move closer to the mean of the group.

The application of GI to “mixed meals” containing two or more carbohydrate sources is also challenged (20). It is clear, however, that if the GI values of the component foods are known, it is possible to accurately predict the relative glycemic response to meals varying widely in energy, fat, protein, and fiber. In a study of 13 typical breakfast meals, the amount of carbohydrate and the GI values of the carbohydrate sources together explained 90% of the variability in glycemic response to a meal (43). The findings of day-long and longer-term studies indicate that mixed meals incorporating low-GI foods reduce average blood glucose concentrations (7,33).

Defining Glycemic Load

The GI allows us to compare the relative glycemic effect of foods and meals with approximately the same carbohydrate content, but it does not permit direct comparison when different amounts of carbohydrate are involved. For this purpose, the glycemic load (GL), the product of the GI of a food and its carbohydrate content (GI × carbohydrate content per serving), was introduced (28). Some commentators have suggested that GL is “better than” or makes more sense than the GI because it takes into account the fact that some high-GI foods (e.g., parsnips and pumpkin) contain little carbohydrate and have minimal effects on glycemia. But only a handful of foods belong in this category, and GL can be more readily “misused” to promote foods that contain little carbohydrate.

By definition, GL can be lowered by making low-GI food choices or by reducing the amount of carbohydrate. However, health organizations around the world, including the Institute of Medicine, universally recommend that at least 45% of energy be from carbohydrate (http://www.iom.edu/report.asp?id=4340). Because low-carbohydrate diets are not recommended, lowering the GI, rather than the amount of carbohydrate, is consistent with current nutrition guidelines. A low-GI meal or diet has different qualities than a low-GL meal or diet. A low-GI diet can be high in grains and fruit, while a low-GL diet can’t. Thus, two foods with the same GI can have widely different effects on risk factors such as low-density-lipoprotein (LDL) cholesterol (42). At the present time, there appear to be more consistent associations between disease risk and GI than between GL and such risks (3).

GI and Weight Control

The application of the GI to weight control is perhaps the most controversial aspect at the present time. Higher carbohydrate intake, particularly of refined carbohydrates and those with high GI, has accompanied increases in obesity, type 2 diabetes, and the metabolic syndrome (25,27,30). While...
most health professionals still regard a low-fat diet as “best practice,” emerging evidence suggests higher-protein and low-GI diets provide benefits for weight loss as well as for cardiovascular disease (CVD) risk reduction. To date, eight clinical trials provide support for GI diets in the context of weight loss (1,4,11,18,31,37–39). In a comparison of four diets of varying GL, the low-GI, high-carbohydrate diet was more effective in reducing both body fat and LDL-cholesterol than were high-protein, lower-carbohydrate diets (31).

Low-GI diets might aid weight control by increasing food residence time in the gut lumen, thereby aiding satiety. Adults and children eating low-GI meals often report feeling “fuller” (26,41) and eat fewer kilojoules at a subsequent meal. The effect may be related to the presence of food in the lower small intestine (ileum) and stimulation of gut-brain satiety hormones such as cholecystokinin. Reducing wide fluctuations in blood glucose may independently reduce hunger. In animal and human studies, brief periods of hypoglycemia are associated with meal initiation (13) Alternate mechanisms may also operate. A low-GI diet has been linked to higher metabolic rate during energy restriction (35) and to higher rates of fat oxidation during exercise (40).

Implementing a Low-GI Diet

Putting the GI into practice is the subject of many popular books (6). Advice is simpler than might be anticipated and takes the form of “eat healthy low-GI foods: low-GI breads, breakfast cereals, and rice, especially those that are also high in fiber; enjoy all types of fruit and vegetables, including beans and plenty of salads with vinaigrette dressings. Reduce the amount of potatoes.” In a prudent diet, it is as simple as swapping a high-GI source of carbohydrate for a low-GI one (“this for that”). Products that contribute to the most carbohydrate are the ones that need to be targeted for exchange (not watermelon and other low-carbohydrate foods). Importantly, implementing a low-GI diet requires knowledge of the GI of local foods. It is not possible to guess which products are low or high GI, and there is no substitute for proper in vivo GI testing.

GI Testing

The GI is defined by its in vivo methodology. It is not possible to generate a GI value from an in vitro method. For this reason, GI testing can be expensive, and, as a result, not all low-GI claims on food labels are valid. At present, there are at least 25 laboratories offering GI testing services round the world, although not all of them use acceptable methodology. SUGiRS at the University of Sydney (www.glycemindex.com) and GI Labs in Toronto (www.gilabs.com) were among the first to offer services to companies worldwide. Although less expensive in vitro methods may guide manufacturers in the formulation of low-GI foods, the results are not appropriate for food labeling. Indeed, marked discrepancies between observed and in vitro results have been reported (5). A draft standard for GI methodology and food classification is currently under consideration by the International Standards Organization (ISO).

Implications for the Food Industry

It could be truthfully claimed that the GI of foods lies almost totally in the hands of the food industry. It is manufacturers who control how much a product changes in its journey from paddock to plate. With rising rates of type 2 diabetes, pre-diabetes, and childhood diabetes, it seems certain that major food manufacturers will be called upon to develop nutritious low-GI foods. While the Australian food industry has taken the lead, many other countries are quietly devoting resources to research and development. Ideally, these products will produce not just a lower glycemic response, but also significant slowing in the rate of digestion of carbohydrate and improved insulin sensitivity. It is a challenge to do this without altering palatability because high levels of starch gelatinization, palatability, convenience, and rapid digestion are inextricably linked. The use of viscous gums such as guar, psyllium, β-glucans, and oat gums is helpful. High-moisture doughs, high temperatures and pressures, extrusion cooking, puffing, and puffing tend to increase the GI. The use of resistant starch or nondigestible and semidigestible sweeteners such as polydextrose and polyols lowers the glycemic response—but not the GI because the available carbohydrate remains unchanged. Similarly, food manufacturers can replace carbohydrate energy with energy from fats and proteins, but the physiological effects will differ from those that result from reducing the GI. We should be cautious of lowering GI and GL without considering the other components of the food or meal; saturated fat and fiber have separate independent effects on disease risk, perhaps of greater importance than the effects of GI and GL. Fructose has a lower GI than sucrose or high-fructose corn syrups, but many health professionals are concerned about its potential to increase cardiovascular risk.

References

Jennie Brand-Miller holds a Personal Chair in Human Nutrition at the University of Sydney. Her research interests focus on all aspects of carbohydrates, including diet and diabetes, the glycemic index, and insulin resistance. She has published more than 200 journal articles and 20 books. Brand-Miller is chair of the Nutrition Committee of the Australian Academy of Science, the immediate past president of the Nutrition Society of Australia, the director of Sydney University Glycemic Index Research Service (SUGIRS, a GI testing service for the food industry), and chair of the Board of Directors of Glycemic Index Limited, which administers a food symbol program for consumers in collaboration with Diabetes Australia and the Juvenile Diabetes Research Foundation. She received a Clunies Ross Medal for Science and Technology in 2003 and the Australian Institute of Food Science and Technology Award of Merit in 2004. She can be reached at jbrandmiller@staff.usyd.edu.au.